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A B S T R A C T   

Background and purpose: Previous studies suggest that major Camellia sinensis (tea) catechins can inhibit 3-chymo-
trypsin-like cysteine protease (3CLpro), inspiring us to study 3CLpro inhibition of the recently discovered cat-
echins from tea by our group. 
Methods: Autodock was used to dock 3CLpro and 16 tea catechins. Further, a 3CLpro activity detection system 
was used to test their intra and extra cellular 3CLpro inhibitory activity. Surface plasmon resonance (SPR) was 
used to analyze the dissociation constant (KD) between the catechins and 3CLpro. 
Results: Docking data suggested that 3CLpro interacted with the selected 16 catechins with low binding energy 
through the key amino acid residues Thr24, Thr26, Asn142, Gly143, His163, and Gln189. The selected catechins 
other than zijuanin D (3) and (-)-8-(5′’R)-N-ethyl-2-pyrrolidinone-3-O-cinnamoylepicatechin (11) can inhibit 
3CLpro intracellularly. The extracellular 3CLpro IC50 values of (–)-epicatechin 3-O-caffeoate (EC-C, 1), zijuanin C 
(2), etc-pyrrolidinone C and D (6), etc-pyrrolidinone A (9), (+)-gallocatechin gallate (GCG), and (-)-epicatechin 
gallate (ECG) are 1.58 ± 0.21, 41.2 ± 3.56, 0.90 ± 0.03, 46.71 ± 10.50, 3.38 ± 0.48, and 71.78 ± 8.36 µM, 
respectively. The KD values of 1, 6, and GCG are 4.29, 3.46, and 3.36 µM, respectively. 
Conclusion: Together, EC-C (1), etc-pyrrolidinone C and D (6), and GCG are strong 3CLpro inhibitors. Our results 
suggest that structural modification of catechins could be conducted by esterificating the 3-OH as well as 
changing the configuration of C-3, C-3′’’ or C-5′’’ to discover strong SARS-CoV-2 inhibitors.   

Introduction 

The novel coronavirus (severe acute respiratory syndrome corona-
virus 2, SARS-CoV-2) has spread rapidly around the world and has 
become a global health emergency (Li et al., 2020). SARS-CoV-2 is an 
enveloped single-stranded RNA virus (Oberfeld et al., 2020). 3-Chymo-
trypsin-like cysteine protease (3CLpro) or main protease is one of the 
most important proteins of the virus, which has already been identified 
as an important pharmacological target in the severe acute respiratory 
coronavirus syndrome (SARS-CoV) and Middle East respiratory syn-
drome virus (MERS) viruses. This protein triggers the production of a 
whole series of enzymes necessary for the virus to carry out its 

replicating and infectious activities. (Grottesi et al., 2020). Meanwhile, 
since a protease homologous to 3CLpro is not present in the human 
body, 3CLpro becomes an ideal anti-coronavirus target, which is 
responsible for processing polyproteins of nidoviruses and picornavi-
ruses (Kim et al., 2016). 

Camellia sinensis (L.) Kuntze (Theaceae) (common name ‘tea’) is 
normally classified into six major types (green tea, white tea, yellow tea, 
oolong tea, black tea, and dark tea) according to the processing manu-
facture, and is popularly consumed around the world (Ke et al. 2019). 
Green tea, black tea, and oolong tea were reported to inhibit the con-
tagious virus SARS-CoV-2 dose-dependently by in vitro cell assays 
(Nishimura et al., 2021). Green tea can inhibit SARS-CoV-2 3CLpro with 
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a half-maximal inhibitory concentration (IC50) at 8.9 ± 0.5 μg/ml 
(Upadhyay et al., 2020). We used SARS-CoV-2 3CLpro for screening 
potential agents against the current fast epidemic since this protein has 
been used previously selected to screen anti-SARS-CoV-2 agents in silico 
and in vitro (Jang et al., 2021; Zhu and Xie, 2020). Common catechin 
monomers have high micromolar IC50 values while with in vivo con-
centrations of less than 1 µM, searching for stronger catechins with small 
IC50 values is highly urgent and realizable for their utilization. 

Researchers have found that introducing new chemical groups into 
the structure of catechins can significantly improve their stability and 
bioavailability, and specifically enhance their pharmacological effects 
(Liu et al., 2021; Xiao et al., 2013). Moreover, the effects of substitution 
at different positions are different. Thus, we selected 16 catechins 
(compounds 1-12), which had recently been isolated from tea by our 
group including the major tea catechins (-)-epigallocatechin gallate 
(EGCG), (-)-epicatechin gallate (ECG), (+)-catechin gallate (CG), and 
(+)-gallocatechin gallate (GCG) to test their 3CLpro inhibition activity. 
These catechins have previously demonstrated different biological ac-
tivities. (-)-Epicatechin 3-O-caffeoate (1, EC-C) can inhibit acetylcho-
linesterase activity (Wang et al., 2017), form complex with iron and 
neutrophil gelatinase-associated lipocalin, and protect against β-amy-
loid (Aβ) induced neurotoxicity in SH-SY5Y cells (Zhang et al., 2018). 
Zijuanin C (2) and zijuanin D (3) are catechin esters with impressive 
activity in protecting SH-SY5Y cells against H2O2-induced damage (Ke 
et al., 2019). Compounds 4-9 are ester-type flavoalkaloids isolated from 
white tea (Bai-Mudan) and Chinese ancient cultivated tea (Xi-Gui), 
which can inhibit the accumulation of advanced glycation end products 
and cell senescence (Cheng et al., 2018; Li et al., 2018). Compounds 
10-12 are four flavoalkaloid cinnamoyl esters with strong acetylcho-
linesterase inhibitory effects (Gaur et al., 2020). 

Luciferase (Luc) refers to a class of enzymes that catalyze specific 
luciferin substrates to produce bioluminescence. Several luciferases 
require no post-translational processing for enzymatic activity and show 

a linear relationship between concentration and their resulting biolu-
minescence (Wet et al., 1986). These properties render them excellent 
genetic reporters. Luc-fused proteins can be easily quantified by 
measuring their catalyzed bioluminescence with a luminometer, 
providing the detection sensitivity up to femtogram level (Williams 
et al., 1989). Luc biosensor system has the advantages of high sensi-
tivity, ease of use, and applicability, which makes it a powerful tool for 
studying viral protease proteolysis events in living cells and achieving 
high-throughput screening of antiviral agents. Therefore, in this study, a 
cell-level screening model for the 3CLpro inhibitor of SARS-CoV-2 was 
established using a 3CLpro activity detection system. The intracellular 
detection system contains the following plasmids: a plasmid expressing 
3CLpro substrate which carries renilla luc; a plasmid expressing 3CLpro; 
and a luc plasmid. A luc gene and a protein aggregation group gene are 
fused and expressed, and a 3CLpro enzyme peptide segment is arranged 
between the two genes. If the 3CLpro is cut at the peptide segment, the 
luc and the protein aggregation group are separated, leading to an active 
luc and a generated chemiluminescent light signal; conversely, when the 
3Cpro activity is inhibited, a chemiluminescent signal is not generated. 
High-throughput screening and drug repurposing have suggested some 
potential hit compounds against SARS-CoV-2. People began to dock a set 
of bioactive molecules from tea plants with major proteins in 
SARS-CoV-2 and found some leading inhibitors against SARS-CoV-2 
(Sharma et al., 2021). We screened the selected 16 catechins by mo-
lecular docking. Further, the extracellular IC50 values of 3CLpro of the 
selected active catechins were achieved. The substrate of 3CLpro has 
two fluorescent groups at both ends, one of which is a quenching group. 
When the substrate is not cut by 3CLpro, the substrate is quenched near 
fluorescence, and there is no fluorescence signal. When the substrate is 
separated by 3CLpro, a fluorescence signal will be generated. Finally, 
the binding KD values of selected catechins and 3CLpro were determined 
by surface plasmon resonance (SPR) technology. 

Fig. 1. Chemical structures of test catechins, (-)-epicatechin 3- 
O-caffeoate (1), zijuanin C (2), zijuanin D (3), etc- 
pyrrolidinone G and H (4), etc-pyrrolidinone I and J (5), etc- 
pyrrolidinone C and D (6), etc-pyrrolidinone E (7), etc- 
pyrrolidinone F (8), etc-pyrrolidinone A (9), (-)-8-(5′’’S)-N- 
ethyl-2-pyrrolidinone-3-O-cinnamoylepicatechin (10), (-)-8- 
(5′’R)-N-ethyl-2-pyrrolidinone-3-O-cinnamoylepicatechin 
(11), (-)-6-(5′’’S)-N-ethyl-2-pyrrolidinone-3-O-cinnamoylepi-
catechin (12), (-)-epicatechin gallate (ECG), (-)-epi-
gallocatechin gallate (EGCG), (+)-catechin gallate (CG), and 
(+)-gallocatechin gallate (GCG).   
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Materials and methods 

Materials 

Analytical grade reagents used for extraction and isolation were 
purchased from Chengdu Kelong Chemical Reagent Co., Ltd (Chengdu, 
China). CM7 sensor chip, 10 × PBS-P buffer (containing 0.2 M phos-
phate buffer, 27 mM and 1.37 M NaCl, 0.5% Surfactant P20, pH adjusted 
to yield pH 7.4 when diluted 10 × and supplemented with 2% DMSO), 
sodium acetate pH 4.0, 4.5, 5.0, 5.5 and amino coupling kit were pur-
chased from Cytiva (Uppsala, Sweden). Dimethyl sulfoxide (DMSO) was 
purchased from Gentihold (Beijing, China). 293T/17 cells (CBP6044) 
were purchased from Cobioer biosciences Co. Ltd (Nanjing, China). 
3CLpro, plasmids expressing 3CLpro, and luc plasmid were provided by 
PreceDo Pharmaceuticals Co. Ltd (Hefei, China). 3CLpro activity 

detection system was purchased from Vazyme (Nanjing, China). DMEM 
medium was purchased from Corning (New York, NY, USA). Fetal 
bovine serum was purchased from Excell (Shanghai, China). EC-C (1), 
zijuanin C (2), zijuanins D (3), etc-pyrrolidinone G and H (4), etc- 
pyrrolidinone I and J (5), etc-pyrrolidinone C and D (6), etc- 
pyrrolidinone E (7), etc-pyrrolidinone F (8), etc-pyrrolidinone A (9), 
(-)-8-(5′’’S)-N-ethyl-2-pyrrolidinone-3-O-cinnamoylepicatechin (10), 
(-)-8-(5′’R)-N-ethyl-2-pyrrolidinone-3-O-cinnamoylepicatechin (11), 
(-)-6-(5′’’S)-N-ethyl-2-pyrrolidinone-3-O-cinnamoylepicatechin (12), 
ECG, EGCG, CG, and GCG were separated and identified from teas in our 
laboratory and their purity was detected by HPLC (Fig. S1-2) (Cheng 
et al., 2018; Gaur et al, 2020; Li et al., 2018). Fig. 1 shows the chemical 
structures of the 16 tested tea catechins. 

Molecular docking 

Autodock 4.2 was used to study the interaction between catechins 
and 3CLpro. We obtained the crystal structure of the 3CLpro at 2.24 Å 
(code: 6LU7) from the Protein Data Bank. Before the docking process, we 
deleted all of the water molecules and co-crystallized ligand from the 
crystal structure of the 3CLpro. Then we used ChemBio3D 14.0 to 
optimize the 3D structure of the compounds based on the energy mini-
mization. The grid points in the X, Y, and Z-axis were set at 50 × 55 × 50 
Å with a grid point spacing of 0.375Å. The grid center was placed in the 
active site pocket center at (-11.3, 13.5, 70.3). LGA runs were set at 100 
(ga_run), with a population size (ga_pop_size) of 150, an energy evalu-
ation (ga_num_evals) 25,000,000, and a maximum number of genera-
tions (ga_num_generations) 27,000. All other parameters were defaulted 
for AutoDock 4.2. PyMOL was used to visualize the docked pose of the 
compounds at the active site of the 3CLpro. 

Establishment of intracellular model for detecting 3CLpro activity 

Cell seeding and compounds dilution on day 1: we made 100 ×
compound solution in DMSO : H2O (1:1), added 6 µl 100 × catechins to 
54 µl growth medium, and diluted catechins with growth medium to 10 
× final concentration. Cells (293T/17) were incubated for 20-24 h in a 
60 mm petri dish. 

Cell seeding on day 2: cells (293T/17) were transiently transfected 
with the 3CLpro activity detection system. After 6-8 h, the cells were 
centrifuged and suspended in a growth medium and then counted with a 
cell counter. Then we diluted the cell suspension in growth medium to 
the desired density, and 90 µl of the cell suspension was placed in a 96- 
well plate. Then we added 10 µl 10 × compounds to 96-well plates. The 

final DMSO concentration in each well was 0.5%. The cells were incu-
bated at 37 ◦C, 5% CO2 for 16 h. 

Measurement on day 3: we first equilibrated the microplate to room 
temperature. The concentration of each compound was 100, 10, and 1 
μM. Then we assayed with 3CLpro activity detection system into each 
well and mixed it on an orbital shaker for 2 min to induce cell lysis. The 
mixture was cultivated at room temperature for 5 min to stabilize the 
luminescence signal. Finally, renilla luminescence (RLU) and flumi-
nescence (Flu) was recorded on SpectraMax Paradigm (Molecular De-
vices, Sunnyvale, CA, USA). Inhibition (%) was calculated relative to the 
wells treated with the carrier (DMSO) using the following formula. 
Graphpad 7.0 software (San Diego, CA, USA) was used to analyze the 
data and fit it to a 4-parameter equation to generate a concentration- 
response curve.   

Extracellular 3CLpro inhibition activity 

We made a 100 × compound solution in DMSO : H2O (1:1), added 4 
µl 100 × compounds to 36 µl buffer, and diluted the compounds with 
growth medium to 10 × final concentration. We mixed 1 µl 3CLpro, 2 µl 
compounds, and 15 µl buffer (50 mM Tris,1 mM EDTA) as the reaction 
system. The concentration of 3CLpro was 1400 μg/ml, and the com-
pound concentrations were 0.015, 0.045, 0.14, 0.41, 1.24, 3.70, 11.10, 
33.33, and 100 μM. Inhibition (%) was calculated relative to vehicle 
(DMSO) treated control wells using the following formula, and data 
were analyzed using Graphpad 7.0, fitting to a 4-parameter equation to 
generate concentration-response curves. We incubated the mixture at 
room temperature for 30 min and added substrate 2 µl to the mixture. 
We continued incubating the mixture at room temperature for 20 min 
and recorded renilla luminescence (Rlu) on SpectraMax Paradigm. 

%inhibition = RLU compound/RLU DMSO control ∗ 100%  

Immobilization of 3CLpro on the chip surface 

PBS-P buffer was selected as the coupling buffer, and 10 × PBS-P (pH 
7.4) was diluted 10 times to prepare a 200 ml running buffer. 3CLpro 
was diluted to 10 μg/ml, with sodium acetate at pH 5.50, 5.00, 4.50, and 
4.00, respectively, and 100 µl was prepared for each pH. Through a pre- 
enrichment experiment, pH 5.00 was determined as the best coupling 
condition. Therefore, the ligand solution was diluted to 10 μg/ml, with 
sodium acetate and pH 5.00. The formal coupling operation was carried 
out with 200 µl. 

First, we injected a freshly prepared mixture of N-hydrox-
ysuccinimide and N-ethyl-N’-(dimethylaminopropyl) carbodiimide (1:1 
v/v) at a flow rate of 10 µl/min for 420 s to activate the CM7 chip. Next, 
we injected the 3CLpro, at a concentration of 10 μg/ml in immobiliza-
tion buffer (10 mM sodium acetate at pH 5.00) into the sample channel 
and allowed the 3CLpro to react the CM7 chip for 7 min at a flow rate of 
10 µl/min, resulting in 3CLpro immobilized densities averaging 4000 
RU. At last, we injected a solution of ethanolamine hydrochloride at pH 
4.50 at a flow rate of 10 µl/min to block the remaining carboxyl groups. 

Analysis of compounds interactions with immobilized 3CLpro 

For the interaction experiments, the solutions of compounds were 
prepared in 1 × PBS-P buffer used in the interaction between protein and 

%inhibition = 100 − (RLU compound /Flu compound)/(RLU control / Flu compound) ∗ 100%   
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catechins. We analyzed a range of concentrations (0.39, 0.78, 1.56, 3.13, 
6.25, 12.50, 25.00 µM) to obtain the sensorgrams of the interactions 
between 3CLpro and the catechins. The catechins were injected onto the 
3CLpro immobilized chip for 180 s at a flow rate of 20 µl/min and 1 ×
PBS-P buffer was injected for 160 s at a flow rate of 20 µl/min to 
regenerate the chip surface at the end of each experiment. Sensorgrams 
were processed by using automatic correction for nonspecific bulk 
refractive index effects. The equilibrium dissociation constants (KD) 
evaluating the 3CLpro-catechins binding affinity were determined by 
the steady-state affinity fitting analysis of the Biacore data by using 
Biacore T200 Evaluation software (Liu et al., 2021). 

Statistical analysis 

All data were analyzed using one-way ANOVA, followed by multiple 
tests. The results were expressed as mean values ± standard deviations. 
GraphPad Prism (version 8.0) software was applied for statistical 
analysis. 

Results 

Molecular docking and interaction analysis 

The molecular docking was assessed by binding constant (Ki) and 
binding energy (Ea). A lower value of Ki and Ea indicates that the 
compound can bind to 3CLpro more tightly (Bhardwaj et al., 2021). 
Table S1 lists the Ea and Ki values. Molecular docking results showed 
that all catechins can bind 3CLpro, suggesting that these catechins have 
potential 3CLpro inhibitory effects. The possible binding sites where 
3CLpro interacted with catechins were drawn by PyMol. The binding 
sites of EC-C (1) are at Thr26, Ser46, Phe140, Gly143, Glu166, His172, 
Gln189, and those of etc-pyrrolidinone C and D (6) are at Leu4, Thr24, 
Thr26, Leu141, Asn142. ECG interacts with 3CLpro at Thr25, Asn142, 
Gly143, His163. GCG interacts with 3CLpro at the sites of Thr24, Thr26, 
Cys145, Ser144, Leu141, His163, Gln189. Their Ki values are 21.71 (1), 
172.45 (6), 28.79 (ECG), 14.34 (GCG) nM and Ea were -10.45 (1), -9.23 
(6), -10.29 (ECG), -10.21 (GCG) kcal/mol. The complexes of 3CLpro and 

catechins suggest that the residues Thr24, Thr26, Asn142, Gly143, 
His163, and Gln189 are the key amino acids for the interaction between 
the catechins and 3CLpro (Guo et al., 2021; Sabbah et al., 2021). 

Intracellular 3CLpro inhibition of selected catechins 

To understand the inhibition of these docking promising catechins 
against 3CLpro, we used 16 tea catechins obtained from our group. Their 
purity was detected by HPLC (Fig. S1-2) (Cheng et al., 2018; Gaur et al., 
2020; Ke et al., 2019; Li et al., 2018; Wang et al., 2021) including the 
known major tea catechins ECG, EGCG, CG and GCG to perform intra-
cellular inhibition assay. Ebselen [(2-phenyl-1, 2-benzoisoselenazol-3 
(2H)-one)] was used as the positive control (IC50 = 69.70 ± 0.28 nM). 
Except for compounds zijuanin D (3) and 
(-)-8-(5′’R)-N-ethyl-2-pyrrolidinone-3-O-cinnamoylepicatechin (11), 
other catechins showed dose-dependent inhibition against 3CLpro 
(Fig. 3, Fig. S3-S5). When the concentration is 100 µM, ECC (1), 
etc-pyrrolidinone C and D (6), ECG, and GCG have stronger intracellular 
3CLpro inhibition (with the ratios at 93.55 ± 0.06, 93.66 ± 0.14, 79.69 
± 1.70, 93.56 ± 0.04 %, respectively) than others. 

Extracellular 3CLpro inhibition 

The IC50 values for EC-C (1), zijuanin C (2), etc-pyrrolidinone C and 
D (6), etc-pyrrolidinone F (8), GCG, and ECG were 1.58 ± 0.21, 41.20 ±
3.56, 0.90 ± 0.03, 46.71 ± 10.50, 3.38 ± 0.48, and 71.78 ± 8.36 µM 
(Fig. 4, Fig. S6-8), respectively. IC50 values of other compounds are 
higher than 100 µM. The IC50 of the positive drug ebselen is 40.00 ±
0.40 nM. Three compounds (1, 6, and GCG) have IC50 values less than 10 
µM (Fig. 4). This extracellular result is consistent with that of the 
intracellular one. 

Surface plasmon resonance (SPR) analysis 

To obtain the dissociation constants between 3CLpro and catechins, 
SPR data have been analyzed by fitting the SPR sensorgrams using non- 
linear fitting of the SPR signal at the steady-state with a Langmuir 

Fig. 2. Interactions of four active catechins with 3CL protease with 3D docking mode, showing that (-)-epicatechin 3-O-caffeoate (1), etc-pyrrolidinone C and D (6), 
(-)-epicatechin gallate (ECG), and (+)-gallocatechin gallate (GCG) interacts with the key binding residues of 3CL protease. 
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binding isotherm model. Five concentration gradients of each analyte 
were plotted with the response value at equilibrium. Rmax is the 
maximum response value. Offset is the minimum response value. The 

fitting efficiency is calculated by the Chi2 value. Table S2 shows that EC- 
C (1), etc-pyrrolidinone C and D (6), and GCG have low KD values (4.29, 
3.46, and 3.63 µM, respectively) (Fig. 5), indicating that they all have 

Fig. 3. Intracellular inhibition of (-)-epicatechin 3-O-caffeoate (1), etc-pyrrolidinone C and D (6), (-)-epicatechin gallate (ECG), and (+)-gallocatechin gallate (GCG) 
against SARS-CoV-2 3CL protease activity. Data are means ± SD from three experiments. Ebselen [(2-phenyl-1, 2-benzoisoselenazol-3(2H)-one)] was used as the 
positive control (IC50 = 69.70 ± 0.28 nM), Z-factor = 0.83. 

Fig. 4. Extracellular Inhibition of ebselen, (-)-epicatechin 3-O-caffeoate (1), etc-pyrrolidinone C and D (6), and (+)-gallocatechin gallate (GCG) against SARS-CoV-2 
3CL protease activity. Data are means ± SD from three experiments. The IC50 of the positive drug ebselen is 40.00 ± 0.40 nM. 
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strong 3CLpro binding affinity. EGCG was used as the positive control 
with KD value at 4.11 µM (Fig. 5). The lower calculated Chi2 value in-
dicates a good accuracy of the fitting. This means that these catechins 
can bind 3CLpro tightly. 

Discussion 

Searching for leading natural products from functional food is always 
a safe and attractive approach for the prevention, alleviation, and 
treatment of human diseases. Tea, as a traditional safe drink containing 
amounts of polyphenols, has various antiviral activities (Gaur and Bao, 
2021). Specifically, green tea has anti-SARS-CoV-2 and 3CLpro inhibi-
tion effects (Upadhyay et al., 2020), suggesting that green tea could be 
an effective resource for searching and subsequent designing 3CLpro 
inhibitors against the contagious virus. 

We selected 16 catechins for molecular docking with 3CLpro 
(Table S1). The molecular docking results suggest that these tea 

catechins could be potential 3CLpro inhibitors. However, the binding 
sites of catechins at 3CLpro are different although they are in the same 
pocket (Fig. 2). EC-C (1) interacts with the protein through ten hydron 
bonds at Thr26, Gly143, Phe140, His172, Glu166, Gln189, and Ser46. 
3CLpro binds etc-pyrrolidinone C and D (6) through six hydrogen bonds 
at Leu4, Thr24, Thr26, Leu141, Asn142. ECG interacts with 3CLpro 
through five hydrogen bonds at Thr25, Asn142, Gly143, His163 while 
GCG interacts with it through ten hydrogen bonds at the sites of Thr24, 
Thr26, Cys145, Ser144, Leu141, His163, Gln189. Previous studies found 
His41, Gly143, Ser144, Cys145, His163, and Glu166 make contributions 
to interact with small molecular ligands through hydrogen bonds 
(Sabbah et al., 2021). Together, the dominant residue of 3CLpro does 
provide theoretical guidance for further design of molecules with 
greater binding capacity and stronger inhibitory abilities. 

Previous studies suggest that galloyl substitution is critical for 
3CLpro inhibition of tea catechins and theaflavins (Henss et al., 2021; 
Zhu and Xie, 2020). EC-C (1) is a bioactive catechin derivative with a 

Fig. 5. Sensorgrams for (-)-epicatechin 3-O-caffeoate (1) 
(0.78-12.50 µM), etc-pyrrolidinone C and D (6) (0.78-12.50 
μM), (+)-gallocatechin gallate (GCG) (0.39-6.25 μM), (-)-epi-
gallocatechin gallate (EGCG as the positive control) (0.39-6.25 
μM) flowing over a CM7 3CL protease-immobilized sensor-chip 
surface at 25◦C. Steady-state affinity analysis of (-)-epicatechin 
3-O-caffeoate (1), etc-pyrrolidinone C and D (6), and (+)-gal-
locatechin gallate (GCG) binding to 3CL protease was fitted to 
a 1:1 interaction model.   
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caffeoyl group substituted at 3-OH other than a normal galloyl substi-
tution at 3-OH such as those of ECG or EGCG. Our previous studies 
showed that this caffeoyl substitution enhanced its bioactivities (Wang 
et al., 2017; Zhang et al., 2018), which is consistent with the present 
result (Fig. 3, Fig. S3-5). 

Previous studies also suggest that additional hydroxyl groups at the B 
ring might enhance catechins’ protein binding capacity (Liu et al., 
2021). Although the present study did not show this trend with a 
stronger inhibition of ECG (IC50 = 71.78 ± 8.36 µM) than that of EGCG 
(IC50 > 100 µM) (Fig. S8), it is consistent with the α-amylase inhibition 
activity in which that the catechol-type catechins were stronger than the 
pyrogallol-type catechins (Xiao et al., 2013). 

Zijuanin C (2) and zijuanin D (3) (C-3′’’ isomers), (-)-8-(5′’’S)-N- 
ethyl-2-pyrrolidinone-3-O-cinnamoylepicatechin (10) and (-)-8-(5′’R)- 
N-ethyl-2-pyrrolidinone-3-O-cinnamoylepicatechin (11) (C-5′’’ iso-
mers) are stereoisomers (Fig. 1), among which 2 and 10 can inhibit 
3CLpro, while 3 and 11 cannot, suggesting that the stereoisomers of 
these catechins do affect their activities. Similarly, the activity of GCG 
(IC50 = 3.38 ± 0.48 µM) is far stronger than its isomer EGCG, which is 
consistent with previous studies (Nguyen et al., 2012; Zhu and Xie, 
2020). Importantly, heating is an important processing procedure for tea 
production, which can lead to transforming EGCG to GCG (Zhou et al., 
2018) and other important catechins (Zhang et al., 2021), thus 
enhancing various bioactivities of tea (Zhou et al., 2018) as well as the 
potential SARS-CoV-2 inhibition. 

Although the major tea catechin EGCG showed weaker 3CLpro in-
hibition, it was reported to inhibit SARs-CoV-2 infections through 
different mechanisms (Henss et al., 2021; Zhang et al., 2021). Severe 
SARs-CoV-2 infection and high mortality are mainly caused by cytokine 
storm and inflammation, triggering a huge burden of oxidative imbal-
ance on the immune system (El-Missiry et al., 2020; Zhang et al., 2021). 
As such, antioxidant, anti-inflammatory and immunity-enhancing 
therapies have become promising approaches to effectively treat 
COVID-19, contributed greatly by Traditional Chinese Medicine in 
China (Li et al., 2020). Various tea products (green, black, oolong, and 
roasted teas) contain lines of polyphenols. The major tea catechins 
EGCG, theasinensin A, and gallated theaflavins exhibit viral prophy-
lactic effects possibly through maintaining the redox homeostasis (Bao 
et al., 2013; El-Missiry et al., 2020; Ohgitani et al., 2021). 

Our above results and structure-activity relationship analyses sug-
gest that the 2-ethylpyrrolidinone substitution (such as the fla-
voalkaloids 4-9 vs. ECG and EGCG, Fig. 1) might not improve the 3CLpro 
inhibition activity. The different ester substitution (galloyl and cinna-
moyl) of 3-OH strongly improved this activity, which might come from 
the large number of hydrogen bonds contributed by the hydroxyl groups 
at the ester substitute (ten each for EC-C and GCG). The changes in the 
configuration of C-3, C-3′’’, and C-5′’’ could also affect the 3CLpro in-
hibition activity, which could make the molecules easily enter into the 
protein. Our present study provided some tea catechins with small 
3CLpro IC50 values, suggesting that structural modification at these 
positions of catechins might be a promising approach to discover new 
small molecular SARS-CoV-2 inhibitors from tea. 

Limitations of the present study are also apparent: first, we only 
check the inhibition assays at a protein level, not real anti-viral assays; 
second, the correlation between tea consumption and inhibition of 
SARS-CoV-2 infection is not clear yet. Therefore, further researches 
could be conducted on the in vitro and in vivo antiviral activities of these 
active catechins for their realistic application. We can expect the use of 
tea consumption as prophylactic antioxidant supplementation to 
enhance the antioxidant, anti-inflammatory effects, and further immune 
booster, other than direct antiviral therapy. 

Conclusion 

Docking results suggested that 3CLpro interacted with the selected 
16 catechins with low binding energy through the key amino acid 

residues Thr24, Thr26, Asn142, Gly143, His163, and Gln189. The 
3CLpro activity detection system showed that these catechins except 3 
and 11 can inhibit 3CLpro activity intracellularly, among which EC-C 
(1), etc-pyrrolidinone C and D (6), ECG, and GCG showed stronger in-
hibition. The extracellular 3CLpro IC50 values of 1, zijuanin C (2), etc- 
pyrrolidinone C and D (6), etc-pyrrolidinone F (8), GCG, and ECG are 
1.58 ± 0.21 µM, 41.2 ± 3.56 µM, 0.90 ± 0.03 µM, 46.71 ± 10.50 µM, 
3.38 ± 0.48 µM, and 71.78 ± 8.36 µM, respectively. The KD values 
determined by SPR are 4.29 µM for 1, 3.46 µM for 6, and 3.36 µM for 
GCG. Our results indicate that the ester substitution of 3-OH and the 
configurations at position C-3, C-3′’’, and C-5′’’ could affect the 3CLpro 
inhibition activity, suggesting that further structural modification could 
be conducted at 3-OH as well as the configuration changes at C-3, C-3′’’, 
and C-5′’’. 
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